

PG - 624

IV Semester M.Sc. Examination, June 2017 (RNS) (Repeaters) (2011 - 12 and Onwards) **MATHEMATICS**

M 402: Numerical Analysis and Matlab/Scilab Programming - II

Time: 3 Hours Max. Marks: 60

Instructions: 1) **All** questions have **equal** marks.

2) Answer any five questions choosing atleast one from each Part.

1. a) Derive the Runge-Kutta fourth order method for the solution of

$$\frac{dy}{dx} = f(x, y), y(x_0) = y_0.$$

- b) Find an approximate solution of $\frac{dy}{dy} = x + y^2$, y(0) = 1using the Picard's method with h = 0.1. Obtain the solution at y (0.3). (6+6)
- 2. a) Derive the Adam-Bashforth method for the solution of

$$\frac{dy}{dx} = f(x, y), \ y(x_0) = y_0.$$

b) Solve the boundary value problem y'' - xy' + 12y = 0 with y(0) + y'(0) = 1, y(1) = 1 using the finite difference method with $h = \frac{1}{3}$. (6+6)

3. a) Solve the Laplace equation

$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0, \ 0 \le x, \ y \le 1 \ \text{subjected to the conditions}$$

$$u(x, 0) = 2x$$
, $u(x, 1) = 2x - 1$, $u(0, u) = u(1, u) = z - y$ with $\Delta x = \Delta y = \frac{1}{3}$ using the finite difference method.

b) Solve the boundary value problem $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial v^2} = \sin \pi x \sin \pi y$, $0 \le x$, $y \le 1$ with

$$u = 0$$
 on the boundary and $\Delta X = \Delta Y = \frac{1}{3}$ using the finite difference method. 6

6

6

6

4. a) Solve the initial boundary value problem $\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2}$, $0 \le x \le 1$, $t \ge 0$ with

$$u(x, 0) = x (1 - x), 0 \le x \le 1$$

$$u(0, t) = 0 = u(1, t)$$

 $\Delta x = \frac{1}{4}$, $\Delta t = \frac{1}{64}$ using the implicit finite difference scheme. Obtain the solution at second-time level.

- b) Discuss the stability criteria for the Schmidt explicit method.
- 5. Derive the alternating direction implicit finite difference method for the solution

of
$$\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2}$$
, $0 \le x, y \le 0$, $t \ge 0$ and hence discuss its stability.

- 6. a) Explain the looping structures with suitable examples.
 - b) Write a program to find the solution of an IVP using the Runge-Kutta method of order four. (6+6)
- 7. a) Explain with suitable examples about the decision making statements.
 - b) Implement the Schmidt method for solving the one-dimensional parabolic partial differential equation. (6+6)
- 8. a) Explain with suitable examples about built-in and user-defined functions.
 - b) Write a program to solve the Poisson's equation using the finite-difference scheme. (6+6)